Das scheint ja gut zu klappen
$\exp\left(-\frac {1}{2}\left(\frac{x-\mu}\sigma\right)^2\right) A \xleftarrow[P+1]{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C \int_{-N}^N e^x\,dx \dfrac {1}{\sqrt {1 - \dfrac {2 \cdot G \cdot M} {r \cdot c^2}}} $
$\begin{align} L & = \lim_{|x| \to \infty}\ \frac{\cos \frac 1x \cdot \frac{-1}{x^2}}{\frac{-1}{x^2}}\\ & = \lim_{|x| \to \infty} {\cos\frac 1x} \cdot \frac{-1}{x^2} \cdot \frac{x^2}{-1}\\ & = \cos\frac 1{\infty} = \cos 0 = 1 \end{align}$
$\begin{alignat}{2} L & = \lim_{|x| \to \infty}\ \frac{\cos \frac 1x \cdot \frac{-1}{x^2}}{\frac{-1}{x^2}} &\quad& \text{by me}\\ & = \lim_{|x| \to \infty} {\cos\frac 1x} \cdot \frac{-1}{x^2} \cdot \frac{x^2}{-1} && \text{by him}\\ & = \cos\frac 1{\infty} = \cos 0 = 1 && \text{Axiom 3} \end{alignat}$